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We consider the interacting system of light and matter and present quantum-kinetically exact relations for
the propagation of light through arbitrarily absorbing and dispersive steadily excited media in a specified
geometry. We arrive at an energy flow law which may be regarded as a generalization of the Kirchhoff and
Planck radiation laws to nonequilibrium. The field fluctuations are shown to generally split up into medium-
and vacuum-induced contributions, of which only the latter governs the energy transport between the medium
and the environment. A thorough derivation of the law is given and it is discussed together with interesting
details in the underlying relations and physics. Especially, in the context of excited semiconductors, quasiequi-
librium emission and lasing, as well as spectral features in the presence of quantum condensation are
addressed.
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I. INTRODUCTION

Light propagating through matter is subjected to manifold
interactions through the coupling of the electromagnetic
fields to charged particles, rendering its description as a
highly complex problem. Matter coupled to light has to be
considered as a dynamic many-body system and the entire
problem is to be treated quantum mechanically.

One successful technique that allows for a quantum-
kinetically consistent treatment of a many-body system inter-
acting with electromagnetic fields is the Green’s function
�GF� technique and its nonequilibrium generalization.1–3 In
Refs. 4 and 5, the microscopic theory of semiconductor la-
sers was extended to nonequilibrium quantum mechanics us-
ing the Keldysh technique. A set of exact relations could be
derived and the emission of excited semiconductors and
semiconductor lasers was analyzed. These results were given
in terms of bulk-matter functions �dielectric function and
generation rate�, neglecting any effects of spatial dispersion
�SD� or spatial inhomogeneities.

Since these appear in principle in any nonbulk matter,
e.g., a semiconductor slab, further efforts on this topic have
been made. Eventually, spatial inhomogeneities could be
fully accounted for in slab geometry, and an exact theory for
the propagation of light through arbitrarily absorbing and
dispersive media in a nonequilibrium steady state was devel-
oped. A brief overview of the general theory was presented
in Ref. 6.

This theory also yields a general law for the energy flow
between media in a nonequilibrium steady state, to which led
some inspiring ideas from Ref. 7. Its validity extends far
over semiconductor lasers due to the universality of the
Green’s function approach. The properties of the medium
enter the theory only via the dielectric function, which can be
modeled for the system considered. The law can be regarded
as a generalization of the Kirchhoff and Planck radiation
laws to arbitrary nonequilibrium states.

This paper aims to give a thorough derivation of this
theory preceded by a general overview of the energy flow
law, which is readable for nonspecialists too, and an exten-
sive discussion of the theory in the context of excited semi-

conductors, lasing, and quantum condensation. Several ex-
ample cases have been calculated and illustrative plots are
shown.

The theory part is laid out as follows. First we try to
illustrate the Green’s function concept and its main ingredi-
ents so that the following theoretical treatise can be followed
easier. In Sec. III B we tailor the photon Green’s function
�PGF� to the slab geometry. After the solution structure for
the vector potential is introduced, we start considering the
energy conservation on the basis of Poynting’s theorem �Sec.
III E�, which we formulate at first for classical light, then in
terms of the photon Green’s functions and the vector poten-
tial. This results in the energy flow law, whose physical con-
tents are then discussed in Sec. IV.

II. OVERVIEW OF THE THEORY

If a body itself is in thermal equilibrium and also in ther-
mal equilibrium with the surrounding vacuum, the radiation
emitted by the body se is equal to the absorbed radiation sa
and there is no resulting energy flow,

s��,�� = se��,�� − sa��,�� = 0. �1�

For this case, the Kirchhoff law states that the emission is
proportional to the absorptivity a of the body, i.e., the frac-
tion of light intensity which the body absorbs if irradiated
with light. For a blackbody, a�1; but in general, a will
depend on the frequency � of the radiation and the angle of
observation �. The state of the body may play a role too, and
a dependence of a on material parameters such as the tem-
perature can be assumed but is not written out in the follow-
ing.

Kirchhoff also knew that the proportionality factor n, later
called the “Kirchhoff function,” must be a universal function
of � and the temperature T of the system,8

se��,�� = sa��,�� = n��,T�a��,�� . �2�

The absorptivity is easily accessible to measurements, e.g.,
for a medium with plane-parallel surfaces using the energy
conservation equation
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a��,�� = 1 − �r��,���2 − �t��,���2, �3�

where r , t are the reflectivity and transmittivity of the body
for incident light normalized to unity. The concrete form of
the Kirchhoff function was subjected to intense scientific de-
bate until Planck presented his well-known formula for the
spectral radiance in thermal equilibrium,9 which corresponds
to n being a Bose function

n��,T� =
1

exp� 1
kBT ��� − ��� − 1

�4�

with vanishing chemical potential �=0.
In this paper, we will show that these relations can be

generalized as follows for “slab geometry,” i.e., if a medium
which is infinitely extended in the y-z direction is assumed.
Both the medium and its environment may be in arbitrary
nonequilibrium steady states. Then, the energy flow will not
generally vanish: s=se−sa�0. The absorbed energy sa is
still given by the absorptivity a, but the function n�� ,�� now
is an arbitrary function reflecting the nonequilibrium distri-
bution of photons in the environment �“photon bath”�. In this
generalized Kirchhoff function, an angle dependence has to
be included, and there is no temperature dependence in the
sense that the temperature is not defined in a nonequilibrium
system.

While in Kirchhoff’s original law the emission is only
accessible via the absorption in thermal equilibrium, we can
now establish an independent relationship for it. Curiously,
even though the emission is a pure quantum effect, it can be
shown to be given by the �purely classical� absorptivity a.
The corresponding proportionality factor b�� ,�� reflects the
nonequilibrium distribution of medium-induced optical exci-
tation, or “internal photons,” which is coupled to the medium
excitation. In a semiconductor, e.g., these excitations are po-
laritons and excitons, respectively.

Thus, the generalized energy flow law can be written in
the compact form

s��,�� = �b��,�� − n��,���a��,�� . �5�

The full energy flux density �Poynting vector� in x direction
is then given as the integral over these spectrally and angular
resolved quantities,

Sx =� d�� d�

2�
��s��,�� . �6�

Furthermore, if the medium can be assumed to be in a
quasiequilibrium state, b develops into a Bose function in
which the chemical potential � becomes a measure for the
medium excitation. Medium-induced optical excitations are
thus, in a sense, always bosonic even though they are
coupled to fermionic matter.

III. THEORY

A. Photon Green’s function technique

GFs, as known from mathematics, are used to solve inho-
mogeneous differential equations, e.g., in classical electrody-
namics. In the quantum-mechanical Green’s function theory,

they are usually defined as an expectation value of field op-
erator correlations in the Heisenberg picture. A certain kind
of these GFs obeys a wave equation with a � inhomogeneity
and thus formally resembles the mathematical Green’s func-
tion.

This concept proved quite successful for equilibrium sys-
tems and is widely used, e.g., in thermodynamics. In a non-
equilibrium system however, time ordering of operators for
forward or backward evolution becomes crucial. The
Keldysh technique3,10 takes this problem into account by de-
fining Green’s functions on a double-time contour C, which
allows keeping a close formal analogy to the equilibrium
case.

Corresponding to the four possible time orders in an op-
erator correlation, the contour-ordered Green’s function con-
tains four different physical functions with different physical
contents.11,12 These so-called Keldysh components are
G	 ,G
 ,G++ ,G−−, of which only two are independent, so
that several general identities exist between them �see Ap-
pendix A�.

The “greater” and “less” functions are often called as
“correlators” and are directly linked to particle densities, cur-
rents, and fluctuations. Additionally, one usually defines the
“retarded” and “advanced” functions Gret ,Gadv, which can be
used to calculate responses to perturbations of the system,

and the spectral function Ĝ, which describes spectral proper-
ties. For example, the particle density can be expressed as a

frequency integral over Ĝ times the Wigner function. The
latter is the representation of the single-particle density ma-
trix and closely related to G
. In the equilibrium limit, this
relation yields the well-known Fermi particle density.2 For
further details on the technique, we recommend Ref. 12; for
application to nonideal plasmas in general, Ref. 13; and for
application to the coupled system of radiation and matter,
Refs. 11, 14, and 15. Introductions are given, e.g., in Refs. 5
and 16.

While the particle Green’s function is usually denoted by
G, the PGF in a many-particle system coupled to electromag-
netic fields is the one defined in terms of the vector potential

operator Â and is denoted by D. We will now sum up how
some important relations for photon Green’s functions
evolve. The effective vector potential in Coulomb gauge on

the double-time contour Aeff�1� �= �Â�1� �	C, where 1� is the pa-
rameter tuple �r1 , t�1� and t� denotes a time on the contour,
obeys Maxwell’s potential equation in its usual form


� −
1

c2

�2

�t�2�Aeff�r,t�� = − �0�jind�r,t�� + jext�r,t��� , �7�

where jind= �ĵ	C and jext is a c-number function.
First we define the photon GF D�1� ,2� � as the functional

derivative

Dik�1� ,2� � = −
1

�0

�Aeff,i�1� �
�jext,k�2� �

= −
1

�0

i

�
��Âi�1� �Âk�2� �	C − Aeff,i�1� �Aeff,k�2� �
 , �8�

which contains the above-mentioned operator correlations or
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more specifically field-field fluctuations �i ,k denote vector
components�.14 Second, the polarization function P �“photon
self-energy”� is defined as

Pik�1� ,2� � = − �0
�jind,i�1� �
�Aeff,k�2� �

, �9�

so that the chain rule yields

�jind,i�1� �
�jext,k�2� �

= Pil�1� ,3� �Dlk�3� ,2� � . �10�

Here and in what follows, the sum convention is applied.
The photon self-energy couples the light to the matter

subsystem. It is the only point where the medium properties
enter. Because quantities that cannot be determined exactly
are combined into this single quantity, approximations are
automatically consistent. This avoids unbalanced approxima-
tions, which may give rise to artifacts that obscure or distort
physical effects. However, the problem remains to find an
approximation for the photon self-energy which reproduces
the physics of interest well enough.

Carrying out the derivative � /�jext in the potential equa-
tion, we arrive at the Dyson equation for the photon GF

�Dij
0,−1�1� ,2� � − Pij�1� ,2� �
Djk�2� ,3� � = ��t�1 − t�3�tik�r1 − r3�

�11�

with the inverse free photon GF

Dij
0,−1�1� ,2� � = 
�r1

−
1

c2

�2

�t�1
2���1� – 2� � �12�

and the transverse � function5

tij�r − r�� = �ij��r − r�� + �i� j
1

4��r − r��
. �13�

Extracting the Keldysh components of this contour-
ordered equation, one finds for the retarded and advanced
GFs, which are defined as

Dij
ret�1,2� = ��t1 − t2��Dij

	�1,2� − Dij

�1,2�
 , �14�

Dij
adv�1,2� = Dji

ret�2,1� , �15�

the retarded Dyson equation

Dik
ret,−1�1,2�Dij

ret�2,3� = ��t�1 − t�3�tij�1 – 3� , �16�

Dik
ret,−1�1,2� = Dik

0,ret,−1�1,2� − Pik
ret�1,2� , �17�

Dik
0,ret,−1�1,2� = 
�r1

−
�2

�t1
2���1 – 2� , �18�

and for the correlators the so-called kinetic Dyson equation

Dik
ret,−1�1,2�Dkj


�2,3� − Pik

�1,2�Dkj

adv�2,3� = 0. �19�

Multiplication with Dret yields the optical theorem as its for-
mal solution,

Dij

�1,2� = Dm,ij


 �1,2� + Dh,ij

 �1,2� , �20a�

Dm,ij

 �1,2� = Dik

ret�1,3�Pkl

�3,4�Dlj

adv�4,2� , �20b�

where Dh

 are solutions of the homogeneous equation

Dret,−1Dh

=0. They reflect the possibility of incident fluctua-

tions �see Sec. III C�.
Lastly, the spectral function D̂ remains to be defined as

D̂ij�1,2� = Dij
	�1,2� − Dij


�1,2� �21�

with the important identity

D̂ij�1,2� = Dij
ret�1,2� − Dij

adv�1,2� . �22�

The spectral function generally splits up into a medium- and
a vacuum-induced contribution according to Eq. �20a�. This
will be detailed in Sec. III C for slab geometry. Note that the
Dyson equation promotes the Green’s function identities and
symmetries �see Appendix A� to the inverse GF and the po-
larization function such that, e.g., one has a spectral polar-

ization function P̂= P	− P
.
Now we establish the link to classical electrodynamics.

We introduce the susceptibility � of the medium such that the
polarization field P �not to be confused with the polarization
Green’s function P�

P�r,t� = �0� d3r�dt��J�r,r�,t,t��E�r�,t�� �23�

and jind=�P /�t; as usual17,18

jind,i�r,t� = − �0� d3r�dt�
�2�ij�r,r�,t,t��

�t � t�
Aeff,j�r�,t�� .

�24�

With this definition, the �classical� potential equation for
Aeff�r , t� can be written as �vector component indices now
omitted�

�
�r1
−

1

c2

�2

�t1
2���1 – 2� +

1

c2

�2��1,2�
�t1 � t2

�Aeff�2� = − �0jext�1�

�25�

and we identify D0,ret,−1 as in Eq. �18� and

Pret�1,2� = −
1

c2

�2��1,2�
�t1 � t2

, �26�

finding that the retarded GF solves the classical wave propa-
gation problem. Besides, it is often convenient to formally
introduce Keldysh components for � along the lines of the
above identity, with �ret��, which then obey the GF identi-
ties and symmetries as well.

B. Photon Green’s function in steady-state slab geometry

The preceding general theory will now be adapted to a
specific system. We regard an isotropic medium in a steady
state. It is infinitely extended in the y-z direction and has a
finite thickness L in the x direction. �The generalization to
anisotropic media is straightforward but not trivial.� We will
consider its linear response on one hand and its emission
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without external �coherent� excitation on the other hand. The
first implies that Eq. �9� is to be taken at Aeff�0; interest-
ingly, the second results in the same condition.

For notational simplicity, TE-polarized light propagating
freely in the transverse direction is considered. Due to the
cylindrical symmetry, we may choose the vector potential in
z direction �Aeff=Aeff,z¬A�. Then, potential equation �7� and
the Dyson equation �11� are invariant to transverse transla-
tions and can be Fourier transformed with respect to �y ,z�
→q�. Because a steady-state system is homogeneous in time,
we may also Fourier transform �t1− t2� dependencies to �.

With these assumptions and transformations, the Dyson
equation for the retarded GF finally reads

Dret,−1�x,x�,�,q��Dret�x�,x�,�,q�� = ��x − x�� �27�

with

Dret,−1�x,x�,�,q�� = D0,ret,−1�x,x�,�,q�� − Pret�x,x�,�,q�� .

�28�

Here and in what follows, the variables � and q� enter the
equations parametrically only and are omitted where pos-
sible. The inverse free photon GF is

D0,ret,−1�x,x�� = 
 �2

�x2 + q0
2���x − x�� . �29�

In it, q0 is the x component of the vacuum wave vector

q =
� + i�

c
eq = q0ex + q� , �30�

in which the infinitesimal imaginary contribution assures
causality. The angle of incidence � then is determined by
q0= �q�sin �. Pret is related to the susceptibility as

Pret�x,x�� = −
�2

c2 ��x,x�� . �31�

This simplified structure is quasi-one-dimensional but still
allows to exactly include SD as well as spatial inhomogene-
ity in the x direction. Several useful symmetry relations arise,
which are listed in Appendix A.

C. Separation of vacuum- and medium-induced contributions

The kinetic Dyson equation �19� is an inhomogeneous
integrodifferential equation for D
 to which arbitrary homo-

geneous solutions Dh

 may be added. The spectral function D̂

�Eq. �21�� can be constructed as the difference of either D	

and D
 or Dret and Dadv. The latter both are uniquely defined
through the radiation condition. Consequently, the difference
D	−D
 is fixed too. It can be written as

D̂ = DretP̂Dadv + Dh
	 − Dh


 = D̂m + D̂v. �32�

The spectral function thus is split up into a contribution

caused by the medium via P, D̂m, and one which cannot be

attributed to the medium, D̂v.

In order to express D̂v by known functions, we may con-

struct the expression Dret,−1D̂Dadv,−1 and transform it as fol-
lows:

Dret,−1D̂Dadv,−1 = P̂ + Dret,−1D̂vDadv,−1 ⇔ Dadv,−1 − Dret,−1

= P̂ + Dret,−1D̂vDadv,−1 ⇔ D0,adv,−1 − D0,ret,−1

= Dret,−1D̂vDadv,−1. �33�

With the last step, the medium contribution has been elimi-
nated. Using Eq. �29� and GF symmetries on the left-hand
side �LHS�, we find

D0,adv,−1�x,x�� − D0,ret,−1�x,x�� = −
4i��

c2 ��x − x�� �34�

and thus have by multiplication of Eq. �33� by Dret ,Dadv

D̂v�x,x�� = − i�
4�

c2 � dx2Dret�x,x2�Dadv�x2,x�� , �35�

an expression whose properties allow for interesting further
considerations.

Note that D̂v contains the infinitesimal prefactor �, which
is exactly compensated by the improper integral in Eq. �35�
being �1 /�. Also, D̂v is a solution of the homogeneous
Dyson equation �19�, which follows by applying Dret,−1 on it,

Dret,−1D̂v = − i�
4�

c2 Dadv →
�→0

0. �36�

So Dh

 must be proportional to D̂v; i.e., Dh


=n
D̂v with pref-
actors n
. Their difference is fixed by Eq. �32� to n
=n	

−1. Apart from that, n
 may be arbitrary since a homoge-
neous solution cannot be normalized.

Since D̂v is a spectral function, its prefactor can be inter-
preted as a mode occupation number.14 It is composed of the
correlators Dh


, which remain even in the absence of the
medium �P→0 in Eq. �20b�� and thus must represent
fluctuations14 of the vacuum. In other words, n�� ,q��
=n
�� ,q�� describes the distribution of fluctuations incident
on the slab from the outside �see also the discussion of Eq.
�61��. Finally, the optical theorem reads

D
 = Dm

 + n
D̂v. �37�

In the following theory, the splitting plays an important

role. We will call D̂v the vacuum-induced contribution,
which will be seen to enter the relations for dissipation and

emission alone, while the medium-induced contribution D̂m
exactly cancels out. There are other options for splitting the
spectral function. Most important, the spectral function of
the pure vacuum

D̂0 = D0,ret − D0,adv, �38�

in slab geometry

D̂0�x,x�,�,q�� =
1

2iq0
cos�q0�x − x��� , �39�

can be separated from D̂, but it is not to be confused with D̂v.
Only the splitting as shown in Eq. �32� separates clearly the
contributions involved in emission and absorption from those
that cancel out.
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During the preparation of this paper, one of us �K.H.� was
able to prove that this splitting does not depend on a certain
geometry, medium, or temporal homogeneity but rather is an
exact universal property of the photon Green’s functions.
The proof, which is presented in Ref. 19, takes a slightly
different approach and might be instructive to the reader too.

D. Solution structure for the vector potential

In order to describe a traditional transmission-reflection
experiment, the external source on the right-hand side of Eq.
�25� is to be put zero and instead an external wave incoming
from left or right is assumed. Consequently, there are two
linearly independent solutions for incidence from left or
right.

The thickness L of the slab is defined such that any po-
larization and any Keldysh component of the polarization
function vanish for �x�	L /2. We then have the vacuum so-
lution

A�x� = �eiq0x + re−iq0x, x 
 − L/2
teiq0x, x 	 L/2 � �40�

in the forward propagating case and a solution A�−x� for the
backward propagating case. It describes incident, reflected,
and transmitted light as plane waves. The amplitude of the
incident wave is chosen as unity, so that r , t are the reflection
and transmission coefficients.

These solutions are fixed by their asymptotics and there is
no need to impose any further boundary conditions on them
�even not Maxwell’s� since the polarization of the medium
increases continuously in the transition region from vacuum
to medium and, consequently, the solutions of Eq. �25�
evolve continuously too from the asymptotic ones �compare
also the discussion in Ref. 20�. Only if one assumes an
abrupt switch of the polarization at the surface, one has to
make sure the continuity of the solutions of Eq. �25� by
imposing Maxwell’s boundary conditions.

Inside the slab, an analytical solution cannot generally be
given. It has to be constructed from the retarded GF or with
the help of the constitutive relation �23�. For a spatially ho-
mogeneous medium, the susceptibility function can be trans-
formed to ��q ,��, and the solutions inside are the polariton
solutions

A�x� = �
i

Ai
+ exp�iqx,ix� + Ai

− exp�− iqx,ix� , �41�

which obey the polariton dispersion

qi
2 =

�2

c2 �1 + ��qi,��� = qx,i
2 + q�

2. �42�

Maxwell’s boundary conditions determine the system if
only one mode is present. In the presence of additional po-
lariton modes, additional boundary conditions �ABCs� have
to be imposed. Several possibilities with a higher or lower
degree of arbitrariness exist and are subjected to intense de-
bate over the last decades. Most of the ABCs can be repro-
duced by generalized (Pekar’s) ABCs.17,18

Using further ��q ,�����0,�� allows to reproduce the
results of Ref. 5 but also means neglecting the effect of spa-

tial dispersion. In principle, only an infinitely extended
�“bulk”� medium is spatially homogeneous, so these two
steps are approximations. However, the present theory ex-
actly includes inhomogeneities in �.

E. Energy flow and conservation

Poynting’s theorem is a suitable starting point for energy
flow and conservation considerations.17 Here, the electro-
magnetic energy flow between medium and vacuum is of
interest. The time derivative of the energy density �Ue /�t
vanishes in the steady state, and due to the transversal trans-
lation invariance in slab geometry, energy can only flow in
the x direction. After integration over the medium bound-
aries, the theorem yields for the Poynting energy flux vector
S= �S ,0 ,0�

S�L/2� − S�− L/2� = − �
−L/2

L/2

dx j�x�E�x� , �43�

where W�x�= j�x�E�x� is the density of dissipated energy
�heat�. Both sides are � ,q� integrals over spectrally and di-
rectionally resolved quantities s ,w which will be introduced
later.

Classical fields and coherent absorption

At first, Poynting’s theorem �43� will be addressed for
average fields �classical light�. Therefore, a monochromatic
wave of frequency �0 incident in the direction q�,0 is as-
sumed; i.e.,

Amc�x,�,q�� =
1

2
�A0�x,�0,q�,0���� − �0��q�,q�,0

+ A0
��x,�0,q�,0���� + �0��q�,−q�,0

� . �44�

This construction assures that Amc�r , t� is real. Evaluating, on
one hand, the Poynting vector

S�x,t� =
1

�0
�E�x,t� � B�x,t���x = −

1

�0

�A�x,t�
�t

�A�x,t�
�x

�45�

with the vacuum solution for the vector potential �Eq. �40��
and, on the other hand, the dissipation inside the medium

W�x,t� = j�x,t�E�x,t� = −
�P�x,t�

�t

�A�x,t�
�t

�46�

with P as the polarization field �Eq. �23��, one finds that the
static parts of these quantities obey the identity

1 − �r�2 − �t�2 = a =
�2

q0c2 Im�
−L/2

L/2

dxdx�A��x���x,x��A�x��

�47�

for any � ,q�. The LHS difference of normalized incoming
light intensity and transmittivity and reflectivity is just the
absorptivity a of the medium.

This identity thus relates the nonlocal susceptibility
��x ,x�� �whose imaginary part is called “microscopic ab-
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sorption” in media where ��x ,x��=��x� ,x�� and the vector
potential inside the medium to its absorptivity. It is an energy
conservation equation and can serve as a hard criterion for
theoretical models and numerical simulations. Here, the re-
flected and transmitted light may be regarded as the intensity
re-emitted coherently to the incoming light and is to be con-
trasted with the incoherent �or correlated� emission, which
will be addressed below.

F. Green’s function representation of the incoherent
energy flow

In this subsection, we will derive the Green’s function
representation of the constituents in Poynting’s theorem,
transform them to slab geometry, and resolve them spectrally
and directionally. Correlated emission is a quantum-
mechanical phenomenon and it is defined as the one without
external sources, i.e., vanishing effective fields. The field op-
erators needed in Poynting’s theorem �43� do not commute,

so symmetrized operators X̂Ŷ �sym= �X̂Ŷ + ŶX̂� /2 have to be
used.

First, the Poynting vector in symmetrized form can be

expressed straightforward in terms of the vector potential Â
according to Ref. 5 as

Ŝi�1� =
1

�0
�Ê�1� � B̂�2��i,sym�1=2

=
1

2�0

�

�t1
�� j�2��Âj�1�Âi�2� + Âi�2�Âj�1��

− �i�2��Âj�2�Âj�1� + Âj�1�Âj�2��
�1=2. �48�

Then, its expectation value �Ŝi�1�	 can be easily transformed
to GFs as follows:5

�Ŝi�1�	 =
i�

2�0

�

�t1
�� j�2��Dji

	�1,2� + Dji

�1,2��

− �i�2��Djj
	�1,2� + Djj


�1,2��
�1=2. �49�

This general expression can be simplified for the slab ge-
ometry. For TE-polarized light, only the zz component of D


and the x component of S are nonzero, so only the second
term can contribute. After Fourier transformations �t1− t2�
→� and �r�,1−r�,2�→q�, the time derivative can be trivially
taken. Finally, negative frequencies are mirrored to positive
values. The result is

S�x� = �
0

� d�

2�
��� d2q�

4�2 s�x,�,q�� , �50�

s�x,�,q�� = −
1

�0
� �

�x1
Re�D	�x,x1� + D
�x,x1���

x1→x

�51�

with parameters � ,q� omitted on the right.

The formulation of the symmetrized dissipation Ŵ

= �ĵ · Ê�sym in terms of PGFs, which results in

� dxW�x� = �
0

� d�

2�
��� d2q�

4�2 w��,q�� , �52�

w��,q�� =� dx1� dx2�n	P
�x1,x2�

− n
P	�x1,x2��D̂v�x2,x1� �53�

is lengthy and more difficult. Details are given in Appendix
B. Note that the dissipation contains no contribution from

D̂m.
Both quantities decompose into spectrally and direction-

ally resolved quantities, which can be analyzed separately.
Now that the energy flow is properly formulated in GFs,
further evaluation requires the knowledge of the retarded
Green’s function, to which Sec. III G is devoted.

G. Retarded photon Green’s function

For the pure vacuum case, Dret�x ,x��= 1
2iq0

exp�iq0�x−x���
solves Eq. �27�. Its physical interpretation is clear: It is the
wave emitted by a unit source at x� which propagates into
both directions and is observed at x.

In the presence of the medium, this interpretation is still
valid but the solution now is determined by the full Dret,−1

and cannot generally be given analytically. However, we will
see that a full analytical solution is not needed and we may
confine ourselves to the case �x��	L /2, i.e., sources outside
the medium.

With this restriction, Dret can be given in terms of the
piecewise defined vector potential �Eq. �40�� as

Dret�x,x�� =
1

2iq0t
���x − x��A�x�A�− x��

+ ��x� − x�A�x��A�− x�� . �54�

Knowing Dret, D̂v can be expressed in terms of A as well.
The improper integral in its definition �Eq. �35�� contains a
1 /� divergency, which is compensated by the � prefactor.
Thus, one may leave out the unknown but finite contribution
of the medium ��x2�
L /2� without changing the integral
value. Some straightforward calculation yields

D̂v�x,x�� =
1

2iq0
�A�x�A��x�� + A�− x�A��− x��� . �55�

This result has already been shown in Ref. 4 neglecting spa-
tial dispersion, but it is derived here under full consideration
of spatial inhomogeneity in the x direction.

Furthermore, for the medium contribution to the spectral

function, D̂m follows from Eq. �32� for any �x�	L /2, �x��
	L /2

D̂m�x,x�� =
a

2iq0
exp�iq0�x − x��� , �56�

where a is the absorptivity defined in Eq. �47�. In the case
that the susceptibility is used in the bulk approximation, it
can be shown that Eqs. �54� and �56� are valid without spa-
tial restriction to x or x�.
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H. Dissipation as balance of generation and recombination,
internal and external photons

Using Eq. �55� in Eq. �52� and defining the global genera-
tion and recombination rates

P
��,q�� =� dx� dx�A��x�P
�x,x��A�x��

= iq0� dx� dx�P
�x,x��D̂v�x�,x� �57�

yields

w��,q�� =
1

iq0
�n
P	 − n	P
� . �58�

We see the dissipation w here as the difference of
�i� an optical excitation of the medium iP	 stimulated by

incident photons �thus proportional to n
=n� and
�ii� in view of n	=n+1, recombination iP
 stimulated by

incident photons ��n� plus spontaneous recombination or
emission ��1�.

The “microscopic” generation and recombination rates
P
�x ,x�� are related to the microscopic absorption �suscep-

tibility� through P	− P
= P̂= Pret− Padv and Eq. �31� just as
the global rates P
 are related to the classical absorptivity
�47�,

iP̂��,q�� = 2q0a��,q�� . �59�

The ratio of global generation and recombination to the glo-
bal absorption defines a distribution b=b


b
��,q�� =
P
��,q��

P̂��,q��
, �60�

which obeys b
=b	−1 due to the identity P̂=P	−P
. It
characterizes globally the distribution of medium-induced
optical excitations �e.g., polaritons in semiconductors� over
the absorption or gain spectrum �distribution of “internal
photons”�.

Notably, while the balance of generation and recombina-
tion stimulated by the external photon bath gives the dissi-
pation w in Eq. �58�, the same stimulated by internal photons
cancels exactly; b	P
−b
P	=0. In other words, spontane-
ous and stimulated re-emission and reabsorption always can-
cel in steady state. Furthermore, also the medium contribu-

tion to the spectral function D̂m cancels out in the dissipation.
With the above definition of b inserted, the optical theo-

rem �Eq. �37�� takes the form

D
 = b
D̂m + n
D̂v, �61�

where the spatial restrictions of Eq. �56� apply. This form
shows that the medium- and vacuum-induced field fluctua-
tions are weighted by the distributions of internal and exter-
nal photons, respectively. Thus, neither internal photon
stimulations nor medium-induced field fluctuations contrib-
ute to the energy transport between the medium and the en-
vironment.

I. Nonequilibrium energy flow

In the case that emission with vanishing external fields is
regarded, the energy flow will be equal at both surface sides
of the slab and Eq. �43� gives the energy flow law referred to
in Sec. I,

s�L/2,�,q�� = −
1

2
w��,q�� = �b��,q�� − n��,q���a��,q�� ,

�62�

in which the spectrally and angular resolved energy flux s is
composed of emission se=ba and absorption sa=−na. It will
be discussed in detail in Sec. IV. The density of the total-
energy flux, which propagates only in the x direction, is
given by the integral

S�L/2� =� d�

2�
��� d2q�

�2��2s�L/2,�,q�� . �63�

IV. DISCUSSION

A. Emission and absorption contributions to the energy flux

In Eq. �62�, sa=−na describes an energy flux as the re-
sponse of the medium to �and stimulated by� the given non-
equilibrium distribution n of external photons. In contrast,
se=ba=iP
 /2q0 describes the emission of medium-induced
light as the response of the medium to vacuum fluctuations
or emission due to spontaneous recombination.

In the case of absorption �a	0� the contribution of sa is
negative and that of se positive. In the presence of gain �a

0�, however, sa becomes the positive contribution of am-
plified vacuum-induced light, while b changes sign �b
=iP
 /2q0a
0� so that se stays positive.

If the externally given incoherent radiation field incident
from the outside is strong, i.e., for n�b, measuring the en-
ergy flow s�sa would provide the same information as a
classical �coherent� reflection-transmission experiment,
namely, the absorptivity a=sa /n. In the opposite case, b
�n→0, the pure emission se into the vacuum can be mea-
sured, and the nonequilibrium distribution b is accessible to
direct observation in experiments measuring simultaneously
the �incoherent� emission and the linear coherent absorptiv-
ity, i.e., transmittivity and reflectivity. Notably, for both co-
herent and incoherent light, the absorptivity involved is the
same. Otherwise, the emission could be obtained by rigorous
calculation of iP
 from the particle Green’s functions of the
interacting system of light and matter.

B. Angle dependency

We introduce the frequency-resolved angle-integrated en-
ergy flux s̄���

s̄��� = �
−�/c

�/c d2q�

�2��2s�L/2,�,q�� , �64�

to which different propagation directions contribute accord-
ing to Eq. �30� even though there is no resulting energy
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transport in the y-z direction. Because the x component of q,
q0, must be positive, q�

2��2 /c2.
For some insight into the effects of this integration, we

consider the bulk approximation for � with the correspond-
ing dispersion relation and vector potential �Eqs. �41� and
�42��. Then, a change in q� at fixed � will result in a change
in the internal wave vector in x direction qx. This affects the
Fabry-Perot resonances �FPRs� which occur roughly if

Re qx = N
�

L
�65�

is met with an integer N. This will be discussed further in
Sec. V A in an example case.

Real-world semiconductors are not infinitely extended,
but this theory relies on the simplifications introduced by the
slab geometry, and an exact analytical treatment of the finite
slab has not yet been achieved. The boundary conditions in
the y and z directions would be extremely difficult to handle.

As an approximation for a finite slab, the q� integral could
be limited to its acceptance angle, and one may additionally
approximate q� =0 under the integral if this angle is small
enough. In lasers, it is usually sought to narrow the solid
angle of the emission by cavity design.4

C. Quasiequilibrium

If the matter subsystem can be prepared in a way that it is
in a thermodynamic �quasi�equilibrium state, a special fun-
damental property of the Green’s functions, the Kubo-
Martin-Schwinger relation, holds1,2,13,21 for the polarization
function

P
��� = exp�−
1

kBT
��� − ���P	��� . �66�

Writing down P̂ under this condition, one easily sees that the
distribution b�� ,q�� must develop into a Bose function and
become independent of q� if quasiequilibrium is reached.
The chemical potential �, which enters the relation through
the statistical operator of the grand canonical ensemble, then
acts as a measure of the excitation of the system, starting
from �=0 for complete thermal equilibrium and increasing
to �	0 for an excited quasiequilibrium state. While the ex-
ternal photon bath obviously can be expected to be Bose
distributed in the equilibrium case, it is nontrivial that this is
always the case for the medium-induced optical excitations
regardless of the �fermionic� matter subsystem they are
coupled to.

In an excited semiconductor, the crossover from absorp-
tion a	0 to gain a
0 appears independently of q� at ��
=�, where the singularity in b is compensated by the zero
in a. Hence, expanding b−1 and a at ��=� yields that the
emission se stays finite at the crossover and is given by the
slope of the absorption according to se�� ,q��
=kBT��a�� ,q�� /��
��=�. Since both a and b switch their
signs, the emission stays positive for any frequency as it
should be. Measuring b via se and a=1− �r�2− �t�2 would en-
able to check whether quasiequilibrium is realized. If so, the
chemical potential � is fixed through the crossover point

and, after that, the temperature and excitation density can be
obtained directly from experimental data �see Sec. V D�.

D. Relation to Kirchhoff and Planck laws

The following derivation will show that the nonequilib-
rium energy flow law �Eq. �62�� and the Kirchhoff law be-
come equivalent in thermal equilibrium and that the Bose
distribution b then corresponds to the Planck formula for the
spectral radiance. The total energy of Bose-distributed free
photons with wave vector q is

E = �
q

�cqnq = �
q

�cq

exp� �cq
kBT � − 1

. �67�

The corresponding energy density can be given resolved for
wave vectors or frequencies,

E

V
=� d3q

�2��3u�q�, u�q� =
�cq

exp� �cq
kBT � − 1

,

E

V
=� d� u���, u��� =

��3

2�2c3

1

exp� ��
kBT� − 1

�68�

with the latter being Planck’s spectral radiance divided by c.
The energy flux of a single photon is the product of its

velocity c and the unit wave vector q /q, so the entire photon
energy flux density is

S =� d3q

�2��3

qc

q
u�q� . �69�

We express the infinitesimal volume element in a form suit-
able for slab geometry,

d3q = d2q�dq0 = d2q�d�
�

c2

1

q0��,q��
�70�

and obtain the energy flux density of the blackbody �cavity�
radiation in x direction,

Sx =� d�

2�
��� d2q�

�2��2s��,q�� , �71�

where s=b is a Bose function with �=0. According to Eq.
�62�, it is equivalent to the energy flux emitted by an ideally
absorbing slab �a�1� in complete thermal equilibrium. In
the Hohlraum case, i.e., if body and environment are in ra-
diative equilibrium, n�b and Kirchhoff’s law is met as the
limiting case with the proportionality factor of the emission
corresponding to Planck’s spectral radiance formula.

E. Low-temperature behavior and quantum condensation

For T→0, the Bose function degenerates to a step func-
tion. The emission se�� ,q��→−���−���a�� ,q�� vanishes
completely in the absorption region ��	� and reflects ex-
actly the gain −a in the gain region ��
�.

The theory given above needs to be supplemented if ef-
fects of quantum condensation occur. As such, the crossover
from Bose-Einstein condensation of excitons at moderate ex-
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citation to the one of Cooper-type electron-hole pairs at high
excitation has been addressed.22,23 A recently presented
approach24,25 allows to analyze the consequences of quantum
condensation for emission and absorption spectra. Some ba-
sic features should be commented on here.

If quantum condensation occurs, an anomalous contribu-
tion will appear in addition to the normal generation iP	 and
recombination iP
 considered above via25

P
�x,x�� → P
�x,x�� + Pcond�x��q�,0
��x − x������ − �� .

�72�

The strength Pcond is determined by the fraction of quasipar-
ticles in the condensate. Since it appears identically in both
the generation and the recombination, its influence cancels in
the classical absorptivity a according to Eqs. �47� and �31�.

Consequently, those effects will not appear directly in
classical absorption experiments, where at best they show up
as smooth changes in the spectral shape of the absorptivity a.
However, in the emission se=iP
 /2q0, an additional sharp
peak at ��=�, whose strength is ��dxPcond�x��A�x��2, would
give evidence for a condensate since the normal part of the
emission just at this frequency tends toward zero for T→0.

V. APPLICATIONS

In order to illustrate the theory given above, we consider
single-layer zinc selenide �ZnSe� slabs and calculate their
absorption and emission spectra as well as mode densities at
different levels of excitation and a temperature of 77 K. We
describe their electromagnetic properties in the spectral re-
gion from the excitonic heavy-hole resonance at 2806 meV
up to the band gap at 2827 meV by appropriate susceptibility
functions for the bulk matter, which were originally worked
out for Ref. 26.

A susceptibility function for a nonexcited ZnSe medium
was constructed in the oscillator model with parameters
�resonance energy, oscillator strength, and damping� fitted to
experimental data. Susceptibilities for media at different lev-
els of excitation, i.e., different densities of excited carriers ne,
were calculated solving the semiconductor Bloch equations.
In the latter calculations, the dynamically screened Coulomb
potential was used in the Lindhard formula approximation,
and phase-space filling as well as Hartree-Fock renormaliza-
tion is fully covered. The resulting susceptibilities reproduce
advanced features such as higher exciton resonances, reso-
nance broadening and shift, band-gap shrinkage, and optical
gain.

The imaginary parts of all these susceptibilities are pre-
sented in Fig. 1. The dashed line corresponds to the nonex-
cited case. With increasing carrier density, the exciton peak
is damped and broadened. For the highest excitation density,
optical gain appears. The crossover from gain to absorption
is at ��=2807 meV and the maximum gain is −0.17.

A. Absorption spectra

The absorptivity can be calculated from Eq. �47� if ampli-
tudes and phases of the light modes inside or outside the slab
are known. These are fixed by Maxwell’s boundary condi-

tions, i.e., a continuous transition of the fields and their first
derivatives at the medium surfaces.

As a macroscopic description of the system, the dielectric
approximation17,20

��x,x�,�� = ���x� 
 L/2���x − x�,�����x�� 
 L/2� �73�

may be employed for the susceptibility, i.e., that of a spa-
tially homogeneous medium cut off at the medium bound-
aries by step functions. One may then use the susceptibility
in the bulk approximation ��q ,��. The corresponding dis-
persion relation and solutions for the vector potential are
given in Eqs. �41� and �42�. In a further approximation, spa-
tial dispersion may be neglected by taking ��q=0,��
=����.

Figure 2 compares the absorptivity of a 500 nm ZnSe slab
with and without spatial dispersion. The polariton solutions
result in dense and fine FPR structures in the absorptivity, so
it is important for any quantitative analysis to consider spa-
tial dispersion. In both cases, the resonances appear very
dense in the spectral range of the exciton binding energy,
where Re � features a sweep. Figure 3�a� shows the angle
dependence with spatial dispersion. Resonances shift with
increasing angle if � is flat in the respective energy range but
shift only weakly close to the exciton resonance.

The longer the slab, the more Fabry-Perot resonances will
occur. Those induced by spatial dispersion wash out with
increasing length. In the following, spatial dispersion will be
neglected for the excited slabs for simplicity and a more
qualitative discussion.

The corresponding susceptibilities ��2�–�4� have been ob-
tained by an extensive numerical evaluation of the semicon-
ductor Bloch equations with many-particle effects, namely,
gain shift, line broadening and shifting, and Pauli blocking.
They reproduce spectral features such as the hydrogen series
of exciton states, the band gap, and gain in the absorptivity
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χ(2) ne = 1× 1014/cm3
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χ(4) ne = 2× 1017/cm3

FIG. 1. �Color online� Imaginary part of susceptibilities � in a
ZnSe slab at T=77 K for different levels of excitation. ��4� features
a crossover from gain to absorption at ��=2807 meV and a maxi-
mum gain of −0.17. The maxima of Im ��1�–�4� are 143.3, 109.2,
37.3, and 17.3. In ��2�, excited exciton state resonances and the
band gap are visible.
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plots in Figs. 3�b� and 3�c�. In the presence of gain, the
absorptivity develops pronounced negative peaks, with �a�
�1 for any angle but strongly increases when the FPR con-
dition is approached �note the logarithmic scale in Fig. 3�c��,
and thus gives rise to strong stimulated light amplification in
the emission se=ba.

B. Quasiequilibrium emission and lasing

In order to calculate the emission from a material with
known absorptivity, only the distribution b has to be known.
It has in principle to be rigorously calculated from the par-
ticle GFs. Here, we will assume the matter subsystem to be
in quasiequilibrium and make use of the fact that b becomes
a Bose function in this case. Temperature T and chemical
potential � have to be chosen according to the excitation.
Because b then is independent of q�, the angle-integrated
emission according to Eq. �64� can be written as

s̄e��� = b��,T�ā��� , �74�

ā��� = �
−�/c

�/c d2q�

�2��2a��,q�� . �75�

The angle-integrated absorptivity ā for a weakly excited
slab �with �=��2�, corresponding to a carrier density of
1014 cm−3� is shown in Fig. 4 in arbitrary units �a.u.� to-
gether with a�� ,q�� for several angles of incidence. The in-
tegration smoothes the FPR structures. By multiplication of
an appropriate Bose function ���2757 meV and T=77 K�,
the spectrally resolved quasiequilibrium emission s̄e follows.
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FIG. 2. Absorptivity a for normal incidence �q� =0� as a func-
tion of energy �� for a nonexcited ZnSe slab of thickness L
=500 nm calculated with �=��1�. Top: neglecting spatial disper-
sion. Dotted vertical lines mark Fabry-Perot resonances for the re-
sulting single mode. Bottom: with spatial dispersion. Additional
resonances appear. Dash-dotted vertical lines mark resonances for
polariton mode q1 and dotted lines for q2.
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FIG. 3. Absorptivity a as a function of energy �� and angle of
incidence in ZnSe slabs at different levels of excitation. �a� Absorp-
tivity a for a non-excited slab, L=500 nm, ��1��q ,��, i.e., including
spatial dispersion. Resonances at energies where ���� is flat shift
strongly with increasing angle. To the contrary, resonances at
sweeps in � shift only little. �b� As above, but for a weakly excited
slab, ��2��q=0,��. Higher exciton state resonances and the band
gap are visible. �c� Logarithm of the gain �log�−a�� below the cross-
over ���
�=2807 meV� for the strongly excited case, L
=2.5 �m, ��4��q=0,��. Build-up of very pronounced peaks at cer-
tain angles as FPR condition is approached.
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In the spectral region investigated here, it is dominated by
the trailer of the Bose function. Even though there is no
amplification through gain in this example, there is a consid-
erable emission due to the length of the slab and the nonzero
excitation. In view of b�1, it is to be considered emission
by spontaneous recombination only. For the strongly excited
case ��4�, chemical potential as well as gain are now in the
interesting spectral range, and we may expect remarkable
amplification and effects arising from the behavior of the
Bose function.

At first, we regard the absorption and emission in a short
slab ���4�, L=50 nm, and Fig. 5�. In this configuration,
Fabry-Perot resonances are sparse and none happens to ap-
pear in the gain range. Somewhat uncommonly, the emission
is concentrated in the absorbing range at two Fabry-Perot
resonances close above the crossover. There is no amplifica-
tion through gain yet. However, the emission is still higher
than in the previous case due to b being greater than unity
close to its singularity at the crossover. The emission is thus
caused by stimulated recombination and the amplification
here an effect of the degeneracy.

This is different in a longer slab, where FPRs exist in the
gain range, causing strong peaks in the absorptivity as in Fig.
3�c�. Then, the emission is dominated by these peaks �Fig.
6�. Weaker structures get lost in the angle integration. The
Bose distribution shifts the weight between the peaks and,
for modes close to the crossover, amplifies even further.
Here, finally, the result is a sharp and strong emission line,
while three other modes fall short by more than a magnitude.

C. Mode density

The density of modes

���� =� d3q

�2��3��� − cq� , �76�

often called density of states, is an interesting physical quan-
tity for the analysis of the optical properties of materials
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FIG. 4. �Color online� Absorptivity and quasiequilibrium emis-
sion in a weakly excited ZnSe slab; L=2.5 �m and ��2��q=0,��.
Vertical dotted lines mark FPRs for normal incidence. Top: angle-
integrated absorptivity ā��� �solid line; in a.u.� and absorptivity
a�� ,q�� �dashed lines� for incidence angles 0°, 45°, and 85°. Bot-
tom: emission s̄e���.

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

or
pt

iv
ity

2800 2805 2810 2815
h̄ω [meV]

0

2

4

6

8

10

12

14

16

E
m

is
si

on
[1

012
m

−2
]

FIG. 5. �Color online� Absorptivity and quasiequilibrium emis-
sion in a strongly excited ZnSe slab; L=50 nm and ��4��q=0,��.
Vertical dotted lines mark FPRs at normal incidence. Solid vertical
line marks crossover. Top: angle-integrated absorptivity ā��� �solid
line; in a.u.� and absorptivity a�� ,q�� �dashed lines� for incidence
angles 0°, 20°, 45°, 60°, and 85°. Bottom: emission s̄e��� �solid
line� and b��� �dashed line�. Scaled dotted horizontal line shows
b=1 level.
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librium emission s̄e��� �bottom� for the case of Fig. 3�c�. Vertical
dotted lines mark FPRs at normal incidence.
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because, e.g., it is proportional to the rate of spontaneous
emission. Moreover, the density of states plays a key role in
studies of photonic band-gap materials, which have drawn
considerable attention and promise a wide range of
applications.27–29

These materials owe their special optical properties to
their periodic structure, thus having a strongly inhomoge-
neous susceptibility. In such matter, the density of states is
position dependent �local density of states �LDOS�� and dif-
ficult to calculate.

For example, in Ref. 29, light propagation in a dielectric
structure with periodicity in one spatial direction is analyzed
on the basis of Green’s functions in an approach considering
scattering in infinitely thin planes to circumvent the inhomo-
geneity problem. With the help of the present theory, this
problem can be treated exactly, and moreover the discussion
of the LDOS can be extended to excited media. Hence, it
seems worthwhile to briefly show how the LDOS can be
introduced in the framework of this theory and to show its
general behavior in an example calculation using the ZnSe
susceptibility functions employed in the preceding examples.

In vacuum, the density of photon states can be expressed

in terms of the vacuum spectral function D̂0 �Eq. �38�� and
has a constant value

�0��� =� d3q

�2��3

i�

�c2D̂0�q,�� =
�2

2�2c3 . �77�

In slab geometry, the vacuum spectral function must be taken
at coordinates x=x� since the Fourier transform of the x com-
ponent of q is a ��x�,

�0�x,�� =� d2q�

�2��2

i�

�c2D̂0�x,x,�,q�� =
�2

2�2c3 . �78�

We define a local density of states ��x ,�� in analogy to

the above with the full spectral function D̂ �Eq. �32�� which
decomposes accordingly into a vacuum- and a medium-
induced contribution

��x,�� =� d2q�

�2��2

i�

�c2D̂�x,x,�,q�� = �v�x,�� + �m�x,�� .

�79�

Now, Eqs. �54�–�56� allow to calculate � from the inner vec-
tor potential A�x�.

In Fig. 7, ��x ,�� and its components are plotted in the
vicinity of the surface of a strongly excited 2.5 �m slab for
three characteristic frequencies. Far away from the slab, the
local density of states approaches the vacuum level. Closer
to the surface, it is distorted and shows damped oscillations
inside the slab.

At the frequency where Im ����, the microscopic absorp-
tion, reaches its maximum �top of Fig. 7�, these oscillations
are quickly damped out. The vacuum contribution �0 van-
ishes inside the slab.

At the crossover �middle�, �m�0 and ���v because
Im ����=0; i.e., there is no medium influence. For the same
reason, the oscillations survive.

On a laser mode �bottom�, �v rises two orders of magni-
tude. �m is negative �because a
0� and of the same order
such that both nearly compensate to ���0. Nevertheless,
there is a strong emission �see Fig. 6� because the emission is

governed by the vacuum-induced contribution D̂v alone in-

stead of the total spectral function D̂.

D. Further application examples

The measurement of the medium excitation distribution b
as se /a in a ZnSe-ZnSSe heterostructure was demonstrated
in Ref. 30. It was found that predominantly polariton modes
close to the exciton resonances were occupied in b. Thus, the
medium excitation in this case was far from quasiequilib-
rium. Further experiments are underway to gain more insight
into the characteristics of b. Especially, we hope to derive the
density and temperature of the excited electron-hole plasma.

Also, with the help of this theory, it was possible to close
a gap between rigorous microscopic theory for radiation-
matter systems and quantum optics by a clear physical inter-
pretation for the noise current operators appearing in the lat-
ter. On this footing, the propagation of nonclassical light
through absorbing and dispersing media can be described.31

VI. CONCLUSION

Using a quantum-kinetic many-body approach, exact re-
sults have been presented for the interacting system of field
and matter in a specified geometry. The spectral function of
photons splits up into a vacuum-induced and a medium-
induced contribution �see Eqs. �32� and �35��, for which the
explicit expressions �55� and �56�, respectively, have been
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FIG. 7. �Color online� Local density of states ��x ,�� �solid red
line�, �v�x ,�� �dash-dotted blue line�, and �m�x ,�� �green dotted
line� according to Eq. �79� in the vicinity of the slab surface at
�x=0 ���4��q=0,�� ,L=2.5 �m�. Dashed lines mark �0 level at the
maximum of Im ���� �top�, at the crossover, Im ����=0 �middle�,
and in the gain area at a Fabry-Perot resonance �bottom�.
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obtained. It is noteworthy that both kinds of states are glo-
bally �i.e., inside and outside� defined and their split does not
correspond to a spatial separation of the inside from the out-
side. There are, of course, many different options to split up
the spectral function of photons, e.g., into the one of the pure
vacuum D̂vac and the remaining. But only the decomposition
according to Eqs. �32� and �35� yields an exact cancellation
of the medium-induced contribution in the balance �58� and
so the physically clear and simple structure of the energy
flow in Eq. �62�.

Also, according to Eq. �61�, the field fluctuations split up
into a vacuum-induced and a medium-induced contribution
whose strengths are given by the distributions n and b, re-
spectively, and only the former contribute to energy transport
between the medium and its environment. The distribution n
describes the population of the vacuum-induced states and is
externally given through preparation of the surrounding, e.g.,
either as a heat bath or by incoherent radiation incident from
outside. Measuring the net energy flow sa=−na induced by
an incoherent radiation n incident from the outside provides
the absorption a just as a classical �coherent� transmission-
reflection experiment.

The distribution b describes the population of the
medium-induced states. It is fixed by the steady-state excita-
tion conditions of the medium and characterizes its globally
defined transverse optical excitations as, e.g., excitonic po-
laritons in semiconductors. For a medium in thermal equilib-
rium, b tends toward a Bose function, to which a chemical
potential can be attributed in the case of quasiequilibrium.
Thus, in a sense, real photons, i.e., after their interaction with
the fermions of the medium is exactly considered, behave
statistically like ideal bosons. For example, for semiconduc-
tors, this applies likewise to optical excitations below �exci-
tonic polaritons� and above the fundamental gap, whereas
neither excitons nor ionized electron-hole pairs can be re-
garded as �ideal� bosons. For n=0, i.e., pure vacuum in the
surrounding, emission is governed by the distribution b. It
generalizes the Planck distribution for ideal photons in ther-
modynamic equilibrium to interacting ones in nonequilib-
rium.

Our results prove that even lasing can be regarded as qua-
sithermal emission. This has already been demonstrated in
Ref. 4 neglecting spatial dispersion and is now exactly con-
firmed. All the features of this light result exclusively from
an extremely strong renormalization of the globally defined
coherent absorption a in the gain region due to high compen-
sation of output losses there. Such quasithermal emission has
been discussed in sample calculations for semiconductor
slabs at different levels of quasiequilibrium excitation. Fur-
thermore, the emission out of a quantum condensate was
shown to appear as an additional sharp peak at the crossover
point, whereas no significant structures are expected in the
absorption.

As a challenge for both experimentalists and theorists, the
nonequilibrium distribution b can be observed directly mea-
suring emission and absorption simultaneously30 or has to be
computed, respectively, providing reasonable approximations
for the polarization function.
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APPENDIX A: SYMMETRIES AND IDENTITIES
IN THE PHOTON GREEN’S FUNCTION

The most important Green’s function identities are given
in Eqs. �14� and �21�. More identities are listed, e.g., in Refs.
12 and 14.

Additional useful symmetries in the steady-state slab ge-
ometry are as follows: �I� as a result of the Fourier transfor-
mations,

Dret�x,x�,�,q�� = Dret�x,x�,− �,− q��� = Dadv�x�,x,�,q���,

�A1�

D	�x,x�,�,q�� = D
�x�,x,− �,− q�� = − D	�x�,x,�,q���,

�A2�

D̂�x,x�,�,q�� = D̂�x,x�,− �,− q��� = − D̂�x�,x,− �,− q�� ,

�A3�

�II� due to symmetry in the geometry,

D
�x,x�,�,q�� = D
�− x,− x�,�,q�� , �A4�

�III� and if ��x ,x� ,� ,q��=��x� ,x ,� ,q��,

D̂�x,x�,�,q�� = 2i Im Dret�x,x�,�,q�� . �A5�

In this paper, the medium is assumed to be isotropic for
simplicity. Then, the GFs depend only on the norm of q� so
that it becomes an outer parameter. Due to the Dyson equa-
tion, these symmetries and identities also apply for the in-
verse Green’s function and the polarization function.

APPENDIX B: GREEN’S FUNCTION REPRESENTATION
OF THE SYMMETRIZED DISSIPATION W

The operator correlations appearing in the symmetrized

dissipation �Ŵ	= ��ĵ · Ê�sym	 can be conveniently handled on
the double-time contour

WC�1� ,2� � = −
�

�t�2
�j�1� �A�2� �	 , �B1�

W	�1,2��1=2 = �j�1�E�1�	 , �B2�

W
�1,2��1=2 = �E�1�j�1�	 . �B3�

Since, in analogy to Eq. �8�,

�j�1� �A�2� �	 =
�

i

�jind�1�
�jext�2�

+ jind�1� �Aeff�2� � �B4�

follows for Aeff=0,

�j�1� �E�1� �	 = �i�P�1� ,3� �
�

�t�2
D�3� ,2� ��

1=2
�B5�

and we can establish the physical limit with the help of the
Langreth theorem,12
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W�1� =
1

2
�i�

�

�t2
�P++�1,3�D	�3,2� − P	�1,3�D−−�3,2�

+ P
�1,3�D++�3,2� − P−−�1,3�D
�3,2���
1=2

.

�B6�

Using Green’s function identities, the contents of the square
brackets can be transformed to �some parameters suppressed
in the following�

�¯� = ��t1 − t3��P	 − P
��D	 + D
�

− ��t2 − t3��P	 + P
��D	 − D
� . �B7�

Replacing ��t2− t3�=��t1− t3�+ ���t2− t3�−��t1− t3��, one
finds that the second term vanishes under � /�t2�dt3 due to
temporal homogeneity �especially, D	�t2− t2�−D
�t2− t2�
= �A�t2�A�t2�	− �A�t2�A�t2�	=0 in the 1→2 limit�. The re-
mainder

�

�t2
�¯� = 2

�

�t2
� d3r3dt3��t1 − t3��P	�t1 − t3�D
�t3 − t2�

− P
�t1 − t3�D	�t3 − t2�� �B8�

can be Fourier transformed. The step function yields a Dirac
identity in Fourier space �Sokhotsky-Weierstrass theorem�
such that we have in slab geometry �q� integral omitted�

W�1� =
1

2
i�

�

�t2
�¯�

= − i�� dx3P� d�1

2�
� d�2

2�

�2

�2 − �1

��P	��1�D
��2� − P
��1�D	��2��

−
1

2
� dx3� d�

2�
��

��P	���D
��� − P
���D	���� . �B9�

The principal-value term vanishes under the x integral to be
taken for Eq. �43�. Employing Eq. �37� results in �� ,q� inte-
grals omitted, �1�= �x1�, and all integrals run from −L /2 to
L /2�

−� d1W�1� =
1

2
� d1� d2� d3� d4�P	�1,2�Dret�2,3�

�P
�3,4�Dadv�4,1� + n
P	�1,2�D̂v�2,1�

− P
�1,2�Dret�2,3�P	�3,4�Dadv�4,1�

− n	P
�1,2�D̂v�2,1�� . �B10�

With the help of GF symmetries, one can show that the
PDPD terms vanish. The complete result is

− �
V

dxW�x� = �
0

� d�

2�
��� d2q�

4�2� dx1� dx2

��n
P	�x1,x2�D̂v�x2,x1�

− n	P
�x1,x2�D̂v�x2,x1�� . �B11�
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